Regioselective 1,3-Dipolar Cycloadditions of (1Z)-1-(Arylmethylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide Azomethine Imines to Acetylenic Dipolarophiles

by Cvetka Turk^a), Jurij Svete^a)*, Branko Stanovnik^a)*, Ljubo Golič^a), Simona Golič-Grdadolnik^b), Amalija Golobič^a), and Lovro Selič^a)

^a) Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
 ^b) National Institute of Chemistry, Ljubljana, Slovenia

The 5,5-dimethylpyrazolidin-3-one (4), prepared from ethyl 3-methylbut-2-enoate (3) and hydrazine hydrate, was treated with various substituted benzaldehydes $5\mathbf{a}-\mathbf{i}$ to give the corresponding (1Z)-1-(arylmethylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide azomethine imines $6\mathbf{a}-\mathbf{i}$. The 1,3-dipolar cyclo-addition reactions of azomethine imines $6\mathbf{a}-\mathbf{h}$ with dimethyl acetylenedicarboxylate (=dimethyl but-2-ynedioate; 7) afforded the corresponding dimethyl pyrazolo[1,2-*a*]pyrazoledicarboxylates $8\mathbf{a}-\mathbf{h}$, while by cycloaddition of 6 with methyl propiolate (=methyl prop-2-ynoate; 9), regioisomeric methyl pyrazolo[1,2-*a*]-pyrazolemonocarboxylates 10 and 11 were obtained. The regioselectivity of cycloadditions of azomethine imines $6\mathbf{a}-\mathbf{e}$ derived from benzaldehydes $5\mathbf{a}-\mathbf{e}$ with a single substituent or without a substituent at the *ortho*-positions in the aryl residue, led to mixtures of regioisomers $10\mathbf{a}-\mathbf{e}$ and $11\mathbf{a}-\mathbf{e}$. Azomethine imines $6\mathbf{f}-\mathbf{i}$ derived from 2,6-disubstituted benzaldehydes $5\mathbf{f}-\mathbf{i}$ gave single regioisomers $10\mathbf{f}-\mathbf{i}$.

Introduction. – Since the beginning of a systematic work on the chemistry of substituted pyrazolidin-3-ones more than four decades ago, the importance of this initially relatively neglected type of heterocycle significantly rose in the last two decades (for a review on pyrazolidin-3-ones, see [1]). Pyrazolidin-3-ones are an important class of compounds that exhibit biological activity and a wide applicability for industrial and synthetic purposes. For example, phenidone (**1a**) and its derivatives and analogues such as BW357U (**1b**) are used as super-additive developers in photographic applications¹) [2] and as inhibitors of cyclooxygenase, lipooxygenase, and γ -aminobutyrate transferase [3]. Another important pyrazolidinone is *Lilly*'s bicyclic pyrazolidinone **2**, which is a γ -lactam antibiotic [4]. On the other hand, pyrazolidin-3-ones and closely related homologues, perhydropyridazin-3-ones, can also serve either as building blocks, or as precursors for the preparation of β -turn mimics [5], azatropane derivatives [6], and natural products such as saxitoxin, celacinnine, and glidobactin antibiotics [7].

Previously, we have reported the stereoselective 1,3-dipolar cycloaddition reactions of azomethine imines derived from rel-(4R,5R)-4-(benzoylamino)-5-phenylpyrazolidin-3-one and on the utilization of rel-(4R,5R)-4-(benzoylamino)-5-phenylpyrazolidin-3-one in the synthesis of 3-(alkylamino)-3-phenyl- and 3-phenyl-3-(pyrazol-1-yl)substituted alanine derivatives [8–11]. Recently, we reported an unusual two-step

¹) There are many publications and patents on this topic. Just few examples are given in [2].

transformation of 5,5-dimethylpyrazolidin-3-one into an alkaloid-like tetracyclic system [12]. On the other hand, *Chuang* and *Sharpless* reported the preparation of N^4 , N^4 -disubstituted ($4S^*$, $5S^*$)-5-phenyl-4-aminopyrazolidin-3-ones and their stereo-selective transformations into substituted 1*H*,5*H*-pyrazolo[1,2-*a*]pyrazol-1-one derivatives *via* N^4 , N^4 -disubstituted ($4S^*$, $5S^*$)-1-(arylmethylidene)-5-phenyl-4-amino-3-oxo-pyrazolidin-1-ium-2-ide azomethine imines as the key intermediates [13]²).

Results and Discussion. - In continuation of our work on the chemistry of pyrazolidin-3-ones, we now report 1,3-dipolar cycloaddition sof (1Z)-1-(arylmethylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide azomethine imines 6a-i with dimethyl acetylenedicarboxylate (=dimethyl but-2-ynedioate; 7) and methyl propiolate (= methyl prop-2-ynoate; 9). The 5,5-dimethyl pyrazolidin-3-one (4), prepared from ethyl 3-methylbut-2-enoate (3) and hydrazine hydrate [14], was treated with various substituted benzaldehydes 5a - i to give the corresponding (1Z)-1-(arylmethylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide azomethine imines **6a**-i (cf. Scheme 1). The (Z)-configuration of the exocyclic C=N bond in azomethine imine **6b**, which is otherwise usual for oxopyrazolidiniumide azomethine imines [1], was confirmed by NMR spectroscopy (NOESY experiment, $d(H-C(1')\cdots Me-C(5)) = 0.27$ nm). The 1,3-dipolar cycloadditions of 1,3-dipoles 6a - h to dimethyl acetylenedicarboxylate (7) gave the corresponding dimethyl 1-aryl-6,7-dihydro-7,7-dimethyl-5-oxo-1H,5H-pyrazolo[1,2-a] pyrazole-2,3-dicarboxylates (8a-h) in 70-97% yields. In the cycloadditions of azomethine imines 6a - i with methyl propiolate (= methyl prop-2-vnoate; 9), regioselectivity was found to be dependent on the substituents attached to the aryl residue. With azomethine imines 6a - e, unsubstituted or monosubstituted at one of the ortho-positions of the benzene ring, ca. 3:1 mixtures of regioisomers 10a - e and 11a - ewere formed. In the cases of **6a**, **b**, **e**, both regioisomers were separated, isolated, and fully characterized, whereas in the cases of 6c, d, the minor isomers 11c, d were only detected by ¹H-NMR. On the other hand, azomethine imines 6f - i, substituted at both ortho-positions of the aromatic ring, afforded single regioisomers 10f - i upon treatment with methyl propiolate (9) (Scheme 1).

²) We are grateful to the referee for informing us about this article, which was published after submission of our manuscript. The numbering of the 1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole derivatives **7–10** in [13] should be revised (*cf.* numbering of **8a–h** in *Scheme 1*).

^a) Determined by ¹H-NMR spectroscopy.

i) Hydrazine hydrate, EtOH, reflux. *ii*) ArCHO (**5a**-i), EtOH, CF₃COOH, r.t. *iii*) MeOOCC \equiv CCOOMe (**7**), 100–150°. *iv*) HC \equiv CCOOMe (**9**), 100–150°.

Spectroscopic and analytical data for compounds 6-11 are in accordance with the data for similar compounds described in [1]. Structures of compounds 6f and 10g were also confirmed by X-ray diffraction analysis (*Figs. 1* and 2).

So far, we do not have a firm explanation for the regioselectivity of these cycloadditions. Since the ratios of the regioisomers formed from the dipole **6a** with an acceptor substituent and from **6c** with a donor substituent are the same, the electronic effects of the substituents at the aromatic ring seem to have a negligible effect on the regioselectivity (*cf. Scheme 1*). Presumably, the electronic distribution in azomethine imines **6a**-**i** is reflected at best by the resonance structures **6** and **6'** as the negative

Fig. 1. ORTEPIII View of the molecular structure of compound **6f**, showing the labelling of the non-H-atoms. Ellipsoids are drawn at the 50% probability level.

Fig. 2. ORTEPII View of the molecular structure of compound **10g**. showing the labelling of the non-H-atoms. Ellipsoids are drawn at the 50% probability level.

charge at the N(1) atom is stabilized by the carbonyl group (*Scheme 2*). In the case of at least one free *ortho*-position in the aromatic ring, the dipole can adopt a planar conformation 6", which allows both regioisomeric transition states. To the contrary, the planar conformation is not accessible in the case of two *ortho*-substituents; therefore, the transition state for the concerted 1,3-dipolar cycloaddition is prohibited. In this case, a two-step *Michael*-type mechanism is feasible. Consequently, the formation of mixtures of regioisomers 10a - e and 11a - e from *ortho*-unsubstituted or *ortho*-monosubstituted azomethine imines 6a - e could be explained by the concerted 1,3-dipolar cycloaddition mechanism with the 'planar' dipole conformation 6" as the reactive species, whereas the regiospecific formation of cycloadducts 10f - i from *ortho*-disubstituted azomethine imines 6f - i could be explained by a two-step *Michael*-type mechanism including the 'nonplanar' dipole conformation as the reactive species and dipolar adducts 12f - i as intermediates (*Scheme 2*).

Experimental Part

General. 5,5-Dimethylpyrazolidin-3-one (4) was prepared according to the procedure described in [14]. Ratios of regioisomers 10a - i and 11a - i were determined in the following manner: after completion of the reaction, volatile components were evaporated and the ¹H-NMR spectra of the residue recorded. All starting materials were commercially available (in most cases from *Fluka*) and purified according to the standard techniques. Column chromatography (CC): silica gel (*Fluka*, silica gel 60; column dimensions 40×5 cm). TLC: alu foils coated with silica gel 60 F 254 (0.2 mm; Merck). M.p.: Kofler micro hot stage. IR: Perkin-Elmer-1310 spectrophotometer. ¹H- and ¹³C-NMR: Bruker-Avance DPX-300 spectrometer. Elemental analyses: Perkin-Elmer CHN Analyser 2400.

(1Z)-1-(Arylmethylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide Azomethine Imines **6a**-**i**: General Procedure. CF₃COOH (1 ml) was added to a stirred mixture of 5,5-dimethyl pyrazolidin-3-one (**4**; 1.14 g, 10 mmol), substituted benzaldehyde **5a**-**i** (10 mmol), and anh. EtOH (40 ml). The mixture was stirred at r.t. for 3-72 h. Volatile compounds were evaporated, Et₂O (30 ml) added to the residue, and the precipitate collected by filtration: azomethine imines **6a**-**i**.

(1Z)-5,5-Dimethyl-1-[(2-nitrophenyl)methylidene]-3-oxopyrazolidin-1-ium-2-ide (**6a**). From 2-nitrobenzaldehyde (**5a**) (24 h): 2.10 g (85%). M.p. 194–196° (EtOH). IR (KBr): 1670 (C=O). ¹H-NMR (300 MHz, (D₆)DMSO): 1.78 (*s*, 2 Me–C(5)); 2.78 (*s*, 2 H–C(4)); 7.60 (*ddd*, J = 8.3, 7.5, 0.8, 1 arom. H); 7.68 (*s*, H–C(1')); 7.76 (*ddd*, J = 7.9, 7.5, 1.1, 1 arom. H); 8.14 (*dd*, J = 8.3, 1.1, 1 arom. H); 9.06 (*dd*, J = 7.9, 1.1, 1 arom. H of Ph). Anal. calc. for C₁₂H₁₃N₃O₃ (247.26): C 58.29, H 5.29, N 16.99; found: C 58.02, H 5.50, N 16.98.

(1Z)-5,5-Dimethyl-1-[(4-nitrophenyl)methylidene]-3-oxopyrazolidin-1-ium-2-ide (**6b**). From 4-nitrobenzaldehyde (**5b**) (3 h): 2.30 g (93%). M.p. >270° (EtOH). IR (KBr): 1680 (C=O). ¹H-NMR (300 MHz, (D₆)DMSO): 1.68 (*s*, 2 Me–C(5)); 2.63 (*s*, 2 H–C(4)); 7.93 (*s*, H–C(1')); 8.30 (*d*, J = 9.0, 2 arom. H); 8.59 (*d*, J = 9.0, 2 arom. H). Anal. calc. for C₁₂H₁₃N₃O₃ (247.26): C 58.29, H 5.29, N 16.99; found: C 58.01, H 5.14, N 16.92.

 $\begin{array}{l} (1Z) -1 - [(2-Methoxyphenyl)methylidene] -5, 5-dimethyl -3-oxopyrazolidin -1-ium -2-ide ($ **6c**). From 2-methoxybenzaldehyde (**5c**) (72 h): 2.11 g (91%). M.p. 160 - 165° (PhMe). IR (KBr): 1650 (C=O). ¹H-NMR (300 MHz, CDCl₃): 1.71 (*s*, 2 Me - C(5)); 2.73 (*s*, 2 H - C(4)); 3.92 (*s*, MeO); 6.93 (*dd*,*J*= 8.3, 0.8, 1 arom. H); 7.06 (*ddd*,*J*= 7.9, 7.5, 0.8, 1 arom. H); 7.44 (*ddd*,*J*= 8.3, 7.5, 1.9, 1 arom. H); 7.64 (*s*, H - C(1')); 9.25 (*dd*,*J*= 7.9, 1.9, 1 arom. H). Anal. calc. for C₁₃H₁₆N₂O₂ (232.29): C 67.22, H 6.94, N 12.06; found: C 67.26, H 6.93, N 12.18.

(1Z)-5,5-Dimethyl-3-oxo-1-[(3,4,5-trimethoxyphenyl)methylidene]pyrazolidin-1-ium-2-ide (6d). From 3,4,5-trimethoxybenzaldehyde (5d) (24 h): 2.87 g (98%). M.p. 134–136° (heptane/EtOH 5:1). IR (KBr): 1660 (C=O). ¹H-NMR (300 MHz, (D₆)DMSO): 1.63 (*s*, 2 Me–C(5)); 2.56 (*s*, 2 H–C(4)); 3.76, 3.83 (2*s*, 1:2, 3 MeO); 7.71 (*s*, H–C(1')); 7.84 (*s*, 2 arom. H). Anal. calc. for C₁₅H₂₀N₂O₄ (292.34): C 61.63, H 6.89, N 9.58; found: C 61.69, H 6.99, N 9.77.

(1Z)-1-[(2,4-Dichlorophenyl)methylidene]-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (**6e**). From 2,4-dichlorobenzaldehyde (**5e**) (24 h): 2.30 g (85%). M.p. 180–184° (Et₂O). IR (KBr): 1670 (C=O). ¹H-NMR (300 MHz, CDCl₃): 1.77 (*s*, 2 Me–C(5)); 2.77 (*s*, 2 H–C(4)); 7.39 (*dd*, J = 8.7, 1.9, 1 arom. H); 7.50 (*d*, J = 1.9, 1 arom. H); 7.52 (*s*, H–C(1')); 9.36 (*d*, J = 8.7, 1 arom. H). Anal. calc. for C₁₂H₁₂Cl₂N₂O (271.15): C 53.16, H 4.46, N 10.33; found: C 52.92, H 4.44, N 10.31.

 $\begin{array}{l} (1Z) -1 - [(2,6-Dichlorophenyl)methylidene] -5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide ($ **6f**). From 2,6-dichlorobenzaldehyde (**5f**) (24 h): 2.43 g (90%). M.p. 246–248° (Et₂O). IR (KBr): 1650 (C=O). ¹H-NMR (300 MHz, CDCl₃): 1.79 (*s*, 2 Me–C(5)); 2.77 (*s*, 2 H–C(4)); 7.18 (*s*, H–C(1')); 7.29–7.37 (*m* $, 3 arom. H). Anal. calc. for C₁₂H₁₂Cl₂N₂O (271.15): C 53.16, H 4.46, N 10.33; found: C 53.05, H 4.66, N 10.17. \end{array}$

 $\begin{array}{l} (1Z) -5, 5-Dimethyl-3-oxo-1-[(2,4,6-trimethylphenyl)methylidene]pyrazolidin-1-ium-2-ide ($ **6g**). From 2,4,6-trimethylbenzaldehyde (**5g**) (48 h): 2.17 g (89%). M.p. 206–210° (PhMe). IR (KBr): 1660 (C=O). ¹H-NMR (300 MHz, CDCl₃): 1.75 (*s*, 2 Me–C(5)); 2.22, 2.28 (2*s*, 2:1,*Me*₃C₆H₂); 2.75 (*s*, 2 H–C(4)); 6.86 (*s*, 2 arom. H); 7.35 (*s*, H–C(1')). Anal. calc. for C₁₅H₂₀N₂O (244.34): C 73.74, H 8.25, N 11.46; found: C 73.91, H 8.23, N 11.40.

(1Z)-5,5-Dimethyl-3-oxo-1-[(2,4,6-trimethoxyphenyl)methylidene]pyrazolidin-1-ium-2-ide (**6h**). From 2,4,6-trimethoxybenzaldehyde (**5h**) (24 h): 2.72 g (93%). M.p. 206–207° (PhMe). IR (KBr): 1650 (C=O). ¹H-NMR (300 MHz, CDCl₃): 1.72 (*s*, Me–C(5)); 2.99 (*s*, H–C(4)); 3.85, 3.86 (2*s*, 1:2, 3 MeO); 6.11 (*s*, 2 arom. H); 7.56 (*s*, H–C(1')). Anal. calc. for $C_{15}H_{20}N_2O_4$ (292.34): C 61.63, H 6.89, N 9.58; found: C 61.31, H 6.97, N 9.74.

(*IZ*)-*1-[(2,6-Dimethoxyphenyl)methylidene]-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide* (**6i**). From 2,6-dimethoxybenzaldehyde (**5i**) (24 h): 2.26 g (86%). M.p. 195–199° (Et₂O). IR (KBr): 1650 (C=O). ¹H-NMR (300 MHz, CDCl₃): 1.72 (*s*, 2 Me–C(5)); 2.75 (*s*, 2 H–C(4)); 3.85 (*s*, 2 MeO); 6.55 (*d*, J = 8.3, 2 arom. H); 7.20 (*s*, H–C(1')); 7.34 (*t*, J = 8.3, 1 arom. H). Anal. calc. for C₁₄H₁₈N₂O₃ (262.31): C 64.10, H 6.92, N 10.68; found: C 64.03, H 7.07, N 10.40.

Dimethyl 1-Aryl-6,7-dihydro-7,7-dimethyl-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-2,3-dicarboxylates 8a - h: General Procedure. A mixture of dimethyl acetylenedicarboxylate (7; 1.2 ml, 10 mmol) and (1Z)-1-(arylmethylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide 6a - h (10 mmol) in an appropriate solvent (PhMe, xylene, or PhOMe; 40 ml) was heated under reflux for 20 min to 4 h. Volatile components were evaporated, the residue was triturated with Et₂O or ⁱPr₂O, and the precipitate was collected by filtration; cycloadducts 8a - h.

Dimethyl 6,7-Dihydro-7,7-dimethyl-1-(2-nitrophenyl)-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-2,3-dicarboxylate (8a). From 6a (xylene, 20 min): 3.55 g (91%). M.p. 164–166° (¹Pr₂O). ¹H-NMR (300 MHz, CDCl₃): 1.25 (*s*, 1 Me-C(7)); 1.36 (*s*, 1 Me-C(7)); 2.43 (*d*, J = 15.8, 1 H-C(6)); 2.87 (*d*, J = 15.8, 1 H-C(6)); 3.53 (*s*, MeOOC-C(2)); 3.97 (*s*, MeOOC-C(3)); 6.44 (*s*, H-C(1)); 7.42 (*ddd*, J = 8.7, 8.3, 1.5, 1 arom. H); 7.64 (*ddd*, J = 8.7, 7.5, 1.1, 1 arom. H); 7.77 (*dd*, J = 7.9, 1.1, 1 arom H); 7.89 (*dd*, J = 7.9, 1.5, 1 arom. H). Anal. calc. for $C_{18}H_{19}N_{3}O_{7}$ (389.37): C 55.53, H 4.92, N 10.79; found: C 55.47, H 4.87, N 10.47.

Dimethyl 6,7-Dihydro-7,7-dimethyl-1-(4-nitrophenyl)-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-2,3-dicarboxylate (**8b**). From **6b** (xylene, 4 h): 3.77 g (97%). M.p. 167–168° (heptane/EtOH 5 : 2). ¹H-NMR (300 MHz, CDCl₃): 1.15 (*s*, 1 Me–C(7)); 1.30 (*s*, 1 Me–C(7)); 2.43 (*d*, J = 15.8, 1 H–C(6)); 2.87 (*d*, J = 15.8, 1 H–C(6)); 3.61 (*s*, MeOOC–C(2)); 3.98 (*s*, MeOOC–C(3)); 5.61 (*s*, H–C(1)); 7.68 (*d*, J = 8.8, 2 arom. H). Anal. calc. for C₁₈H₁₉N₃O₇ (389.37): C 55.53, H 4.92, N 10.79; found: C 55.36, H 4.80, N 10.81.

Dimethyl 6,7-Dihydro-1-(2-methoxyphenyl)-7,7-dimethyl-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-2,3-dicarboxylate (8c). From 6c (xylene, 2 h): 3.10 g (83%). M.p. 104–105° (1 Pr₂O). 1 H-NMR (300 MHz, CDCl₃): 1.19 (*s*, 1 Me–C(7)); 1.31 (*s*, 1 Me–C(7)); 2.34 (*d*, *J*=15.4, 1 H–C(6)); 2.79 (*d*, *J*=15.8, 1 H–C(6)); 3.57 (*s*, MeOOC–C(2)); 3.88 (*s*, MeOC₆H₄); 3.98 (*s*, MeOOC–C(3)); 6.02 (*s*, H–C(1)); 6.89 (*d*, *J*=8.3, 1 arom. H); 6.98 (*dd*, *J*=7.9, 7.5, 1 arom. H); 7.26 (*m*, 1 arom. H); 7.36 (*dd*, *J*=7.5, 1.9, 1 arom. H). Anal. calc. for C₁₉H₂₂N₂O₆ (374.40): C 60.95, H 5.92, N 7.48; found: C 60.98, H 5.98, N 7.37.

Dimethyl 6,7-Dihydro-7,7-dimethyl-5-oxo-1-(3,4,5-trimethoxyphenyl)-1H,5H-pyrazolo[1,2-a]pyrazole-2,3-dicarboxylate (8d). From 6d (xylene, 30 min): 3.82 g (88%). M.p. 147–149° (EtOH). ¹H-NMR (300 MHz, CDCl₃): 1.21 (s, 1 Me–C(7)); 1.27 (s, 1 Me–C(7)); 2.41 (d, J = 15.7, 1 H–C(6)); 2.88 (d, J = 15.7, H–C(6)); 3.63 (s, MeOOC–C(2)); 3.84, 3.88 (2s, 1:2, 3 MeOC₆H₂); 3.97 (s, MeOOC–C(3)); 5.45 (s, H–C(1)); 6.68 (s, 2 arom. H). Anal. calc. for C₂₁H₂₆N₂O₈ (434.45): C 58.06, H 6.03, N 6.45; found: C 58.01, H 6.21, N 6.48.

Dimethyl 1-(2,4-Dichlorophenyl)-6,7-dihydro-7,7-dimethyl-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-2,3-dicarboxylate (**8e**). From **6e** (PhMe, 25 min): 2.91 g (70%). M.p. 76–79° (heptane). ¹H-NMR (300 MHz, CDCl₃): 1.15 (s, 1 Me–C(7)); 1.34 (s, 1 Me–C(7)); 2.40 (d, J = 15.8, 1 H–C(6)); 2.80 (d, J = 15.8, H–C(6)); 3.59 (s, MeOOC–C(2)); 3.98 (s, MeOOC–C(3)); 6.07 (s, H–C(1)); 7.29 (dd, J = 8.7, 1.9, 1 arom. H); 7.36 (d, J = 1.9, 1 arom. H); 7.52 (d, J = 8.7, 1 arom. H). Anal. calc. for C₁₈H₁₈Cl₂N₂O₅ (413.26): C 52.31, H 4.39, N 6.78; found: C 52.27, H 4.36, N 6.76.

Dimethyl 1-(2,6-*Dichlorophenyl*)-6,7-*dihydro*-7,7-*dimethyl*-5-*oxo*-1H,5H-*pyrazolo*[1,2-a]*pyrazole*-2,3-*dicarboxylate* (**8f**). From **6f** (PhOMe, 3 h): 3.18 g (77%). M.p. 152–153° (EtOH). ¹H-NMR (300 MHz, CDCl₃): 1.15 (*s*, 1 Me–C(7)); 1.40 (*s*, 1 Me–C(7)); 2.40 (*d*, J = 15.8, 1 H–C(6)); 2.83 (*d*, J = 15.8, 1 H–C(6)); 3.59 (*s*, MeOOC–C(2)); 3.97 (*s*, MeOOC–C(3)); 6.54 (*s*, H–C(1)); 7.17 (*dd*, J = 8.3, 7.9, 1 arom. H); 7.32 (*dd*, J = 7.9, 1.1, 1 arom. H). ¹³C-NMR (75.5 MHz, CDCl₃): 19.7; 24.9; 49.4; 52.2; 53.9; 62.4; 65.7; 112.0; 128.5; 129.9; 131.1; 134.6; 135.9; 136.2; 137.4; 159.9; 163.0; 166.6. Anal. calc. for C₁₈H₁₈Cl₂N₂O₅ (413.26): C 52.31, H 4.39, N 6.78; found: C 52.33, H 4.34, N 6.48.

Dimethyl 6,7-*Dihydro*-7,7-*dimethyl*5-oxo-1-(2,4,6-trimethylphenyl)-1H,5H-pyrazolo[1,2-a]pyrazole-2,3-dicarboxylate (**8g**). From **6g** (PhMe, 90 min): 3.15 g (82%). M.p. 114–115° (heptane). ¹H-NMR (300 MHz, CDCl₃): 1.07 (*s*, 1 Me–C(7)); 1.36 (*s*, 1 arom. Me); 2.24 (*s*, 1 Me–C(7)); 2.40 (*d*, J = 15.8, 1 H–C(6)); 2.46 (*s*, 1 arom. Me); 2.48 (*s*, 1 arom. Me); 2.80 (*d*, J = 15.8, 1 H–C(6)); 3.57 (*s*, MeOOC–C(2)); 3.96 (*s*, MeOOC–C(3)); 6.06 (*s*, H–C(1)); 6.78 (*s*, 1 arom. H); 6.83 (*s*, 1 arom. H). Anal. calc. for C₂₁H₂₆N₂O₅ (386.45): C 65.27, H 6.78, N 7.25; found: C 65.22, H 6.94, N 7.06.

Dimethyl 6,7-*Dihydro*-7,7-*dimethyl*-5-oxo-1-(2,4,6-trimethoxyphenyl)-1H,5H-pyrazolo[1,2-a]pyrazole-2,3dicarboxylate (**8h**). From **6h** (xylene, 20 min): 3.13 g (72%). M.p. 186–188° (EtOH). ¹H-NMR (300 MHz, CDCl₃): 1.18 (s, 1 Me–C(7)); 1.30 (s, 1 Me–C(7)); 2.31 (d, J = 15.5, 1 H - C(6)); 2.82 (d, J = 15.5, 1 H - C(6)); 3.57 (s, MeOOC–C(2)); 3.79, 3.82 (2s, 2:1, 1 arom. Me); 3.96 (s, MeOOC–C(3)); 6.09 (s, H–C(1)); 6.12 (s, 2 arom. H). ¹³C-NMR (75.5 MHz, CDCl₃): 18.9; 24.3; 49.1; 51.6; 53.2; 55.2; 55.7; 56.1; 65.5; 91.4; 109.8; 115.1; 135.0; 160.6; 161.1; 163.4; 167.7. Anal. calc. for C₂₁H₂₆N₂O₈ (434.45): C 58.06, H 6.03, N 6.45; found: C 58.14, H 6.12, N 6.74.

Methyl 1-Aryl-6,7-dihydro-7,7-dimethyl-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-2-carboxylates 10a-i and Methyl 1-Aryl-6,7-dihydro-7,7-dimethyl-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-3-carboxylates 11a-e: General Procedure. A mixture of methyl propiolate (9; 0.5 ml, 6 mmol) and (1Z)-1-(arylmethylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide 6a-i (5 mmol) in an appropriate solvent (PhMe, xylene, or PhOMe; 20 ml) was heated under reflux for 1-8 h. Volatile components were evaporated to afford mixtures of isomers 10a-e and 11a-e or single regioisomers 10f-i. Regioisomers 10a, b, e and 11a, b, e were then separated by CC. In the cases of mixtures of 10c, d and 11c, d, the minor isomers 11c, d were detected by ¹H-NMR spectroscopy. In the case of 10f-i, the residue was triturated with an appropriate solvent to give the pure compounds.

Methyl 6,7-Dihydro-7,7-dimethyl-1-(2-nitrophenyl)-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-2-carboxylate (**10a**) and Methyl 6,7-Dihydro-7,7-dimethyl-1-(2-nitrophenyl)-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-3-carboxylate (**11a**). From **6a** (PhMe, 1 h), after CC (Et₂O).

Data of Major Isomer **10a**: Yield: 0.930 g(56%). M.p. $110-115^{\circ}$ (Et₂O). ¹H-NMR (300 MHz, CDCl₃): 1.23 (s, 1 Me-C(7)); 1.31 (<math>s, 1 Me-C(7)); 2.44 (<math>d, J=15.8, 1 H-C(6)); 2.88 (<math>d, J=15.8, 1 H-C(6)); 3.56 (s, MeOOC-C(2)); 6.38 (<math>d, J=1.5, H-C(1)); 7.41 (ddd, J=1.5, 7.5, 7.9, 1 arom. H); 7.51 (<math>d, J=1.5, H-C(3)); 7.62 (ddd, J=1.2, 7.5, 7.5, 1 arom. H); 7.77 (dd, J=1.2, 7.9, 1 arom. H); 7.85 (dd, J=1.5, 7.9, 1 arom. H); 7.91 arom. H); $7.92 \text{ (ddd, J=1.2, 7.5, 7.5, 1 \text{ arom. H})$; 7.77 (dd, J=1.2, 7.9, 1 arom. H); 7.85 (dd, J=1.5, 7.9, 1 arom. H); $7.92 \text{ (ddd, J=1.5, 7.9, 1 \text{ arom. H})}$; $7.92 \text{ (dddd, J=1.5, 7.9, 1 \text{ arom. H})$

Data of Minor Isomer **11a**: Yield: 0.174 g(11%). M.p. $180 - 185^{\circ}$ (Et₂O). ¹H-NMR (300 MHz, CDCl₃): 1.14 (s, 1 Me - C(7)); 1.24 (s, 1 Me - C(7)); 2.42 (d, J = 15.7, 1 H - C(6)); 2.98 (d, J = 15.7, 1 H - C(6)); 3.85 (s, MeOOC - C(3)); 5.95 (d, J = 2.5, H - C(1)); 6.07 (d, J = 2.3, H - C(2)); 7.47 (ddd, J = 1.5, 7.5, 7.9, 1 arom. H); 7.73 (ddd, J = 1.2, 7.5, 7.5, 1 arom. H); 8.01 (dd, J = 1.2, 7.9, 1 arom. H); 8.22 (dd, J = 1.5, 7.9, 1 arom. H). Anal. calc. for $C_{16}H_{17}N_3O_5$ (331.33): C 58.00, H 5.17, N 12.68; found: C 58.06, H 5.37, N 12.54.

Methyl 6,7-*Dihydro-7,7-dimethyl-1-(4-nitrophenyl)-5-oxo-1*H,5H-*pyrazolo[1,2-a]pyrazole-2-carboxylate* (**10b**) and Methyl 6,7-*Dihydro-7,7-dimethyl-1-(4-nitrophenyl)-5-oxo-1*H,5H-*pyrazolo[1,2-a]pyrazole-3-carboxylate* (**11b**). From **6b** (PhOMe, 1 h), after CC (CHCl₃/MeOH 25:1).

Data of Major Isomer **10b**: Yield 0.730 g (44%). M.p. $119-120^{\circ}$ (CHCl₃/MeOH 25:1). ¹H-NMR (300 MHz, CDCl₃): 1.14 (*s*, Me–C(7)); 1.25 (*s*, Me–C(7)); 2.44 (*d*, *J* = 15.8, 1 H–C(6)); 2.89 (*d*, *J* = 15.8, H–C(5)); 3.64 (*s*, MeOOC–C(2)); 5.58 (*d*, *J* = 1.2, H–C(1)); 7.53 (*d*, *J* = 1.2, H–C(3)); 7.69 (*d*, *J* = 8.8, 2 arom. H); 8.21 (*d*, *J* = 8.8, 2 arom. H). ¹³C-NMR (75.5 MHz, CDCl₃): 19.3; 25.2; 49.5; 52.0; 64.3; 65.0; 115.9; 124.0; 129.3; 130.4; 148.0; 149.6; 164.1; 166.9. Anal. calc. for C₁₆H₁₇N₃O₅ (331.33): C 58.00, H 5.17, N 12.68; found: C 58.23, H 5.36, N 12.58.

Data of Minor Isomer **11b**: Yield 0.296 g (18%). M.p. $101-102^{\circ}$ (CHCl₃/MeOH, 25:1). ¹H-NMR (300 MHz, CDCl₃): 1.15 (*s*, 1 Me-C(7)); 1.29 (*s*, 1 Me-C(7)); 2.43 (*d*, *J* = 15.7, 1 H-C(6)); 2.98 (*d*, *J* = 15.7, 1 H-C(6)); 3.87 (*s*, MeOOC-C(3)); 5.50 (*d*, *J* = 2.5, H-C(1)); 5.87 (*d*, *J* = 2.5, H-C(2)); 7.65 (*d*, *J* = 8.7, 2 arom. H): Anal. calc. for C₁₆H₁₇N₃O₅ (331.33): C 58.00, H 5.17, N 12.68; found: C 57.96, H 5.02, N 12.73.

Methyl 6,7-*Dihydro-1-(2-methoxyphenyl)-7,7-dimethyl-5-oxo-1*H,5H-*pyrazolo[1,2-a]pyrazole-2-carboxylate* (**10c**). From **6c** (PhMe, 3 h), after CC (Et₂O).

Data of Major Isomer **10c**: Yield 0.320 g (20%). M.p. 112–114° (Et₂O). ¹H-NMR (300 MHz, CDCl₃): 1.17 (*s*, 1 Me–C(7)); 1.27 (*s*, 1 Me–C(7)); 2.37 (*d*, J = 15.4, 1 H–C(6)); 2.81 (*d*, J = 15.4, 1 H–C(6)); 3.61 (*s*, MeOOC–C(2)); 3.88 (*s*, MeOC₆H₄); 6.02 (*d*, J = 1.5, H–C(1)); 6.89 (*dd*, J = 1.1, 8.3, 1 arom. H); 6.97 (*ddd*, J = 1.1, 7.5, 7.5, 1 arom. H); 7.26 (*ddd*, J = 1.7, 7.5, 8.3, 1 arom. H); 7.35 (*dd*, J = 1.5, T.5, 1 arom. H); 7.57 (*d*, J = 1.5, H–C(3)). Anal. calc. for C₁₇H₂₀N₂O₄ (316.35): C 64.54, H 6.37, N 8.86; found: C 64.88, H 6.35, N 8.90.

Data of Minor Isomer **11c**: ¹H-NMR (300 MHz, CDCl₃): 1.48 (s, 1 Me-C(7)); 2.97 (d, J = 15.4, 1 H-C(6)); 3.13 (d, J = 15.4, 1 H-C(6)); 3.76 (s, MeOOC-C(3)).

Methyl 6,7-*Dihydro-7,7-dimethyl-5-oxo-1-(3,4,5-trimethoxyphenyl)-1*H,5H-*pyrazolo[1,2-a]pyrazole-2-carboxylate* (10d). From 6d (PhMe, 2 h), after CC (Et,O).

Data of Major Isomer **10d**: Yield 0.885 g (47%). M.p. $105-107^{\circ}$ (Et₂O). ¹H-NMR (300 MHz, (D₆)DMSO): 1.21 (*s*, 1 Me-C(7)); 1.22 (*s*, 1 Me-C(7)); 2.40 (*d*, *J* = 15.7, 1 H-C(6)); 2.89 (*d*, *J* = 15.7, 1 H-C(6)); 3.66 (*s*, MeOOC-C(2)); 3.84, 3.87 (2*s*, 1:2, 1 arom. MeO); 5.41 (*d*, *J* = 1.2, H-C(1)); 6.69 (*s*, 2 arom. H); 7.50 (*d*, *J* = 1.2, H-C(3)). Anal. calc. for C₁₉H₂₄N₂O₆ (376.41): C 60.63, H 6.43, N 7.44; found: C 60.79, H 6.60, N 7.49.

Data of Minor Isomer **11d**: ¹H-NMR (300 MHz, CDCl₃): 1.18 (s, 1 Me-C(7)); 1.29 (s, 1 Me-C(7)); 5.33 (d, J = 2.6, H-C(1)); 5.93 (d, J = 2.6, H-C(2)).

Methyl 1-(2,4-Dichlorophenyl)-6,7-dihydro-7,7-dimethyl-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-2-carboxylate (10e) and Methyl 1-(2,4-Dichlorophenyl)-6,7-dihydro-7,7-dimethyl-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-3carboxylate (11e). From 6e (PhMe, 2 h), after CC (Et₂O).

Data of Major Isomer **10e**: Yield 1.156 g (65%). M.p. 140–148° (Et₂O). ¹H-NMR (300 MHz, CDCl₃): 1.14 (*s*, 1 Me–C(7)); 1.30 (*s*, 1 Me–C(7)); 2.40 (*d*, J = 15.8, 1 H–C(6)); 2.82 (*d*, J = 15.8, 1 H–C(6)); 3.62 (*s*, MeOOC–C(2)); 6.03 (*d*, J = 1.5, H–C(1)); 7.27 (*dd*, J = 2.0, 7.9, 1 arom. H); 7.36 (*d*, J = 1.9, 1 arom. H); 7.48 (*d*, J = 8.7, 1 arom. H); 7.56 (*d*, J = 1.5, H–C(3)). Anal. calc. for C₁₆H₁₆Cl₂N₂O₃ (355.22): C 54.10, H 4.54, N 7.89; found: C 54.34, H 4.65, N 7.74.

Data of Minor Isomer **11e**: Yield 0.176 g (10%). M.p. $124-126^{\circ}$ (Et₂O). ¹H-NMR (300 MHz, CDCl₃): 1.16 (*s*, 1 Me-C(7)); 1.28 (*s*, 1 Me-C(7)); 2.42 (*d*, J = 16.0, 1 H - C(6)); 2.97 (*d*, J = 16.0, 1 H - C(6)); 3.85

(s, MeOOC-C(2)); 5.74 (d, J = 1.6, H-C(1)); 5.98 (d, J = 1.6, H-C(2)); 7.32 (dd, J = 1.9, 8.2, 1 arom. H); 7.37 (d, J = 1.9, 1 arom. H); 7.81 (d, J = 8.7, 1 arom. H). ¹³C-NMR (75.5 MHz, CDCl₃): 20.5; 25.8; 50.2, 53.1; 61.0; 64.3; 122.3; 128.3; 129.4; 131.0; 131.1; 132.7; 134.6; 137.6; 159.5; 166.8. Anal. calc. for C₁₆H₁₆Cl₂N₂O₃ (355.22): C 54.10, H 4.54, N 7.89; found: C 54.27, H 4.69, N 7.84.

Methyl 1-(2,6-*Dichlorophenyl*)-6,7-*dihydro-7,7-dimethyl-5-oxo-1*H,5H-*pyrazolo*[*1,2-a*]*pyrazole-2-carboxylate* (**10f**). From **6f** (xylene, 7 h): 1.510 g (85%). M.p. 145–147° (Et₂O). ¹H-NMR (300 MHz, CDCl₃): 1.14 (*s*, 1 Me–C(7)); 1.34 (*s*, 1 Me–C(7)); 2.40 (*d*, J = 15.8, 1 H–C(6)); 2.84 (*d*, J = 15.8, 1 H–C(6)); 3.62 (*s*, MeOOC–C(2)); 6.47 (*d*, J = 1.7, H–C(1)); 7.16 (*dd*, J = 8.3, 7.9, 1 arom. H); 7.31 (*dd*, J = 8.3, 1.1, 1 arom. H); 7.32 (*dd*, J = 7.9, 1.1, 1 arom. H); 7.53 (*d*, J = 1.7, H–C(3)). ¹³C-NMR (75.5 MHz, CDCl₃): 19.6; 25.0; 49.9; 52.0; 61.9; 65.2; 114.5; 128.6; 129.7; 131.1; 131.2; 134.9; 135.9; 137.4; 164.1; 166.4. Anal. calc. for C₁₆H₁₆Cl₂N₂O₃ (355.22): C 54.10, H 4.54, N 7.89; found: C 54.02, H 4.63, N 7.85.

Methyl 6,7-*Dihydro-7,7-dimethyl-5-oxo-1-(2,4,6-trimethylphenyl)-1*H,5H-*pyrazolo[1,2-a]pyrazole-2-carboxylate* (**10g**). From **6g** (PhMe, 8 h): 1.443 g (88%). M.p. 135–136° (Et₂O). ¹H-NMR (300 MHz, CDCl₃): 1.06 (*s*, 1 Me–C(7)); 1.30 (*s*, 1 Me–C(7)); 2.24 (*s*, 1 arom. Me); 2.40 (*d*, J = 15.4, 1 H–C(6)); 2.42 (*s*, 1 arom. Me); 2.47 (*s*, 1 arom. Me); 2.81 (*d*, J = 15.4, 1 H–C(6)); 3.60 (*s*, MeOOC–C(2)); 6.00 (*d*, J = 1.9, H–C(1)); 6.80 (br. *s*, 2 arom. H); 7.46 (*d*, J = 1.9, H–C(3)). Anal. calc. for C₁₉H₂₄N₂O₃ (328.41): C 69.49, H 7.37, N 8.53; found: C 69.81, H 7.34, N 8.72.

Methyl 6,7-*Dihydro*-7,7-*dimethyl*-5-oxo-1-(2,4,6-trimethoxyphenyl)-1H,5H-pyrazolo[1,2-a]pyrazole-2-carboxylate (**10h**). From **6h** (PhMe, 3 h): 1.204 g (64%). M.p. 162–165° (PhMe). ¹H-NMR (300 MHz, (D₆)DMSO): 1.16 (*s*, 1 Me–C(7)); 1.28 (*s*, 1 Me–C(7)); 2.32 (*d*, J=15.6, 1 H–C(6)); 2.84 (*d*, J=15.6, 1 H–C(6)); 3.61 (*s*, MeOOC–C(2)); 3.79 (br. *s*, 1 arom. MeO); 6.06 (*d*, J=1.8, H–C(1)); 6.13 (*s*, 2 arom. H); 7.43 (*d*, J=1.8, H–C(3)). ¹³C-NMR (75.5 MHz, CDCl₃): 19.4; 24.8; 50.1; 51.6; 55.5; 55.6; 56.4; 65.2; 91.3; 92.7; 110.3; 118.1; 129.2; 161.3; 164.8; 166.8. Anal. calc. for C₁₉H₂₄N₂O₆ (376.41): C 60.63, H 6.43; N 7.44; found: C 60.50, H 6.78, N 7.64.

Methyl 1-(2,6-Dimethoxyphenyl)-6,7-dihydro-7,7-dimethyl-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-2-carboxylate (**10i**). From **6i** (toluene, 4 h): 1.386 g (80%). M.p. 159–162° (heptane).¹H-NMR (300 MHz, CDCl₃): 1.16 (*s*, 1 Me–C(7)); 1.29 (*s*, 1 Me–C(7)); 2.33 (*d*, J = 15.5, 1 H–C(6)); 2.85 (*d*, J = 15.8, 1 H–C(6)); 3.60 (*s*, MeOOC–C(2)); 3.81 (br. *s*, 1 arom. Me); 6.16 (*d*, J = 1.9, H–C(1)); 6.56 (*d*, J = 8.3, H–C(3'), H–C(5')); 7.21 (*t*, J = 8.4, H–C(4')); 7.46 (*d*, J = 1.9, H–C(3)). Anal. calc. for C₁₈H₂₂N₂O₅ (346.39): C 62.42, H 6.40, N 8.09; found: C 62.65, H 6.42, N 8.17.

X-Ray Structure Determination of Compounds **6f** and **10g**. The crystallographic data are presented in the Table. The pictures of the molecular structures of compounds **6f** and **10g** are shown in Figs. 1 and 2. Both structures were solved by direct methods with the SIR92 [15] program. The positions of H-atoms were obtained from difference Fourier maps. We employed full-matrix least-squares refinement on F_o with anisotropic temperature factors for all non-H atoms. For compound **10g**, H-atoms were refined isotropically; for compound **6f**, the positions of H-atoms were refined with fixed displacement parameters of atoms of attachment. For compound **10g**, the correction for secondary extinction [16] was applied with $g = 2.5(9) \cdot 10^4$. The Xtal3.4 [17] system of crystallographic programs was used for the correlation and reduction of data, structure refinement, and interpretation. ORTEPII [18] and ORTEPIII [19][20] programs were used to produce molecular graphics. Further details of crystal structures of compounds **6f** and **10g** can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (e-mail: deposit@ccdc.cam.ac.uk), quoting the deposition numbers CCDC 145358 and CCDC 145359, resp.

	6f	10g
Crystal data		
Chemical formula	$C_{12}H_{12}Cl_2N_2O$	$C_{19}H_{24}N_2O_3$
$M_{\rm r}$	271.15	328.4
Crystal system	monoclinic	triclinic
Space group	$P2_{1}/c$	$P\bar{1}$
a [Å]	11.630(1)	8.315(1)
b [Å]	8.343(1)	10.077(1)
c [Å]	13.069(1)	11.634(1)
$\alpha [\circ]$	90.00	74.43(1)
β [°]	96.49(1)	82.65(1)
γ [°]	90.00	72.72(1)
$V[Å^3]$	1260.0(1)	895.4(2)
Ζ	4	2
Calc. density D_x [Mg m ⁻³]	1.429	1.218
Radiation type	MoK_a	MoK_a
Wavelength (λ)	0.71069	0.71069
No. of refl. for cell parameters	75	100
θ range [°]	8.9-15.9	8.26-17.87
$\mu [\mathrm{mm}^{-1}]$	0.4994	0.0772
Temperature [K]	293(1)	293(1)
Crystal shape	prism	prism
Crystal size [mm]	$0.95 \times 0.53 \times 0.39$	$0.56 \times 0.45 \times 0.28$
Crystal color	colorless	yellow
Data collection		
Diffractometer	Enraf Nonius CAD-4	Enraf Nonius CAD-4
Data collection method	$\omega/2\theta$ scans	$\omega/2\theta$ scans
Absorption correction	none	none
No. of measured refl.	12127	8683
No. of independent refl.	3020	4298
No. of observed refl.	2630	3204
Criterion of observed refl.	$I > 2.5\sigma(I)$	$I > 2.5\sigma(I)$
$R_{ m int}$	0.0244	0.0067
θ_{\max} [°]	28	28
No. of standard refl.	3	3
Frequency of standard refl.	every 333.3 min of scan time	every 333.3 min of scan time
Intensity decay [%]	-0.05	-0.58
Refinement		
R	0.041	0.040
wR	0.036	0.047
No. of contributing refl.	2630	3806
No. of parameters	190	314
$(\Delta \sigma)_{\rm max}$	0.004	0.008
$\Delta ho_{ m max}$	0.274	0.259
$\Delta ho_{ m min}$	-0.668	-0.182

Table 1. Crystallographic Data for Compounds 6f and 10g

Financial support of the Ministry of Science and Technology of Slovenia is gratefully acknowledged.

REFERENCES

- H. Dorn, Chem. Heterocycl. Compd. USSR 1981, 3; R. M. Claramunt, J. Elguero, Org. Proc. Prep. Int. 1991, 23, 275; J. Elguero, 'Pyrazoles', in 'Comprehensive Heterocyclic Chemistry II', Eds. A. R. Katritzky, C. W. Rees, and E. F. V. Scriven, Vol. 3, Ed. I. Shinkai, Elsevier Science Ltd., Oxford, 1996, p. 1.
- J. D. Kendall, Brit. Pat., 650,911, 1951 (*Chem. Abstr.* 1952, 46, 144 g); R. J. I. Eubanks, L. K. Johnson, U.S. Pat., US 4,835,285, 1989 (*Chem. Abstr.* 1989, 111, 194757); S. Washizu, J. Yamaguchi, F. Shinozaki, A. Shimomura, T. Usami, T. Endo, K. Saeki, Ger. Offen., DE 3,835,062; 1989 (*Chem. Abstr.* 1989), 111,222120); A. Kamitakahara, K. Ogi, U.S. Pat., US 4,840,879, 1989 (*Chem. Abstr.* 1989, 111, 222036).
- [3] Y. Abe, S. Osanai, H. Tenmyo, Yakugaku 1978, 27,230 (Chem. Abstr. 1978, 89, 191670); S. R. Challand; F. C. Copp; C. V. Denyer, K. E. Eakins, J. M. G. Walker, N. Whittaker, A. G. Caldwell, Eur. Pat. Appl. 22,578, 1981 (Chem. Abstr. 1981, 95, 62193); Y. Ling, W. Li, W. Liu, Y. Pei, Yiyao Gongye 1986, 17, 66 (Chem. Abstr. 1986, 105, 172347); J. Frigola, A. Colombo, J. Parés, L. Martinéz, R. Sagarra, R. Roser, Eur. J. Med. Chem. 1989, 24, 435; D. Riendeau, J. P. Falgueyret, D. J. Nathaniel, J. Rokach, N. Ueda, S. Yamamoto, Biochem. Pharmacol. 1989, 38, 2313; L. A. Marshall, J. Y. Chang, W. Calhoun, J. Yu, R. P. Carlson, J. Cell Biochem. 1989, 40, 147.
- [4] L. N. Jungheim, S. K. Sigmund, J. Org. Chem. 1987, 52, 4007; J. M. Indelicato, C. E. Pasini, J. Med. Chem. 1988, 31, 1227; L. N. Jungheim, R. J. Ternansky, Chem. β [Beta]-Lactams 1992, 306 (Chem. Abstr. 1993, 119, 180561).
- [5] M. Kahn, S. Wilke, B. Chen, K. Fujita, J. Am. Chem. Soc. 1988, 110, 1638; M. Kahn, R. A. Chrusciel, T. Su, T. Xuan, Synlett 1991, 31.
- [6] F. P. J. T. Rutjes, H. Hiemstra, H. H. Mooiweer, W. N. Speckamp, *Tetrahedron Lett.* 1988, 29, 6975; F. O. H. Pirrung, F. P. J. T. Rutjes, H. Hiemstra, W. N. Speckamp, *Tetrahedron Lett.* 1990, 31, 5365; F. P. J. T. Rutjes, M. M. Paz, H. Hiemstra, W. N. Speckamp, *Tetrahedron Lett.* 1991, 32, 6629; F. P. J. T. Rutjes, J. H. Udding, H. Hiemstra, W. N. Speckamp, *Heterocycles* 1992, 33, 81.
- [7] P. A. Jacobi, M. J. Martinelli, S. Polanc, J. Am. Chem. Soc. 1984, 106, 5594; H. Matsuyama, M. Kobayashi,
 H. H. Wasserman, *Heterocycles* 1987, 26, 85; Q. Meng, M. Hesse, *Synlett* 1990, 148; Q. Meng, M. Hesse,
 Tetrahedron 1991, 47, 6251.
- [8] J. Svete, A. Prešeren, B. Stanovnik, L. Golič, S. Golič-Grdadolnik, J. Heterocycl. Chem. 1997, 34, 1323.
- [9] A. Prešeren, J. Svete, B. Stanovnik, J. Heterocycl. Chem. 1999, 36, 799.
- [10] S. Zupančič, J. Svete, B. Stanovnik, J. Heterocycl. Chem. 1999, 36, 607.
- [11] J. Svete, B. Stanovnik, Heterocycles 1999, 51, 2073.
- [12] C. Turk, J. Svete, B. Stanovnik, L. Golič, A. Golobič, L. Selič, Org. Lett. 2000, 2, 423.
- [13] T.-H. Chuang, K. B. Sharpless, Helv. Chim. Acta 2000, 83, 1734.
- [14] T. Lieser, K. Kemener, Chem. Ber. 1951, 84, 4.
- [15] A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, G. Polidori, J. Appl. Cryst. 1994, 27, 435.
- [16] A. C. Larson, 'Crystallographic Computing', Eds. F. R. Ahmed, S. R. Hall, and C. P. Huber, Copenhagen, Munksgaard, 1970, p. 291.
- [17] S. R. Hall, G. S. D. King, J. M. Stewart, 'The Xtal3.4 User's Manual', University of Western Australia, Lamb, Perth, 1995.
- [18] C. K. Johnson, 'ORTEPII. Report ORNL-5138', Oak Ridge National Laboratory, Tennessee, USA, 1976.
- [19] M. N. Burnett, C. K. Johnson, 'ORTEP-III Report ORNL-6895', Oak Ridge National Laboratory, Tennessee, USA, 1996.
- [20] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.